97 research outputs found

    Using DelPhi Capabilities to Mimic Protein\u27s Conformational Reorganization with Amino Acid Specific Dielectric Constants

    Get PDF
    Many molecular events are associated with small or large conformational changes occurring in the corresponding proteins. Modeling such changes is a challenge and requires significant amount of computing time. From point of view of electrostatics, these changes can be viewed as a reorganization of local charges and dipoles in response to the changes of the electrostatic field, if the cause is insertion or deletion of a charged amino acid. Here we report a large scale investigation of modeling the changes of the folding energy due to single mutations involving charged group. This allows the changes of the folding energy to be considered mostly electrostatics in origin and to be calculated with DelPhi assigning residue-specific value of the internal dielectric constant of protein. The predicted energy changes are benchmarked against experimentally measured changes of the folding energy on a set of 257 single mutations. The best fit between experimental values and predicted changes is used to find out the effective value of the internal dielectric constant for each type of amino acid. The predicted folding free energy changes with the optimal, amino acid specific, dielectric constants are within RMSD=0.86 kcal/mol from experimentally measured changes

    Systematic Exploitation of Multiple Receptor Conformations for Virtual Ligand Screening

    Get PDF
    The role of virtual ligand screening in modern drug discovery is to mine large chemical collections and to prioritize for experimental testing a comparatively small and diverse set of compounds with expected activity against a target. Several studies have pointed out that the performance of virtual ligand screening can be improved by taking into account receptor flexibility. Here, we systematically assess how multiple crystallographic receptor conformations, a powerful way of discretely representing protein plasticity, can be exploited in screening protocols to separate binders from non-binders. Our analyses encompass 36 targets of pharmaceutical relevance and are based on actual molecules with reported activity against those targets. The results suggest that an ensemble receptor-based protocol displays a stronger discriminating power between active and inactive molecules as compared to its standard single rigid receptor counterpart. Moreover, such a protocol can be engineered not only to enrich a higher number of active compounds, but also to enhance their chemical diversity. Finally, some clear indications can be gathered on how to select a subset of receptor conformations that is most likely to provide the best performance in a real life scenario

    SDPhound, a Mutual Information-Based Method to Investigate Specificity-Determining Positions

    Get PDF
    Considerable importance in molecular biophysics is attached to influencing by mutagenesis the specific properties of a protein family. The working hypothesis is that mutating residues at few selected positions can affect specificity. Statistical analysis of homologue sequences can identify putative specificity determining positions (SDPs) and help to shed some light on the peculiarities underlying their functional role. In this work, we present an approach to identify such positions inspired by state of the art mutual information-based SDP prediction methods. The algorithm based on this approach provides a systematic procedure to point at the relevant physical characteristics of putative SPDs and can investigate the effects of correlated mutations. The method is tested on two standard benchmarks in the field and further validated in the context of a biologically interesting problem: the multimerization of the Intrinsically Fluorescent Proteins (IFP)

    DelPhi Web Server: A comprehensive online suite for electrostatic calculations of biological macromolecules and their complexes.

    Get PDF
    Here we report a web server, the DelPhi web server, which utilizes DelPhi program to calculate electrostatic energies and the corresponding electrostatic potential and ionic distributions, and dielectric map. The server provides extra services to fix structural defects, as missing atoms in the structural file and allows for generation of missing hydrogen atoms. The hydrogen placement and the corresponding DelPhi calculations can be done with user selected force field parameters being either Charmm22, Amber98 or OPLS. Upon completion of the calculations, the user is given option to download fixed and protonated structural file, together with the parameter and Delphi output files for further analysis. Utilizing Jmol viewer, the user can see the corresponding structural file, to manipulate it and to change the presentation. In addition, if the potential map is requested to be calculated, the potential can be mapped onto the molecule surface. The DelPhi web server is available from http://compbio.clemson.edu/delphi_webserver

    Adaptive nanopores: A bioinspired label-free approach for protein sequencing and identification

    Get PDF
    AbstractSingle molecule protein sequencing would tremendously impact in proteomics and human biology and it would promote the development of novel diagnostic and therapeutic approaches. However, its technological realization can only be envisioned, and huge challenges need to be overcome. Major difficulties are inherent to the structure of proteins, which are composed by several different amino-acids. Despite long standing efforts, only few complex techniques, such as Edman degradation, liquid chromatography and mass spectroscopy, make protein sequencing possible. Unfortunately, these techniques present significant limitations in terms of amount of sample required and dynamic range of measurement. It is known that proteins can distinguish closely similar molecules. Moreover, several proteins can work as biological nanopores in order to perform single molecule detection and sequencing. Unfortunately, while DNA sequencing by means of nanopores is demonstrated, very few examples of nanopores able to perform reliable protein-sequencing have been reported so far. Here, we investigate, by means of molecular dynamics simulations, how a re-engineered protein, acting as biological nanopore, can be used to recognize the sequence of a translocating peptide by sensing the "shape" of individual amino-acids. In our simulations we demonstrate that it is possible to discriminate with high fidelity, 9 different amino-acids in a short peptide translocating through the engineered construct. The method, here shown for fluorescence-based sequencing, does not require any labelling of the peptidic analyte. These results can pave the way for a new and highly sensitive method of sequencing

    Between Algorithm and Model: Different Molecular Surface Definitions for the Poisson-Boltzmann based Electrostatic Characterization of Biomolecules in Solution

    Get PDF
    The definition of a molecular surface which is physically sound and computationally efficient is a very interesting and long standing problem in the implicit solvent continuum modeling of biomolecular systems as well as in the molecular graphics field. In this work, two molecular surfaces are evaluated with respect to their suitability for electrostatic computation as alternatives to the widely used Connolly-Richards surface: the blobby surface, an implicit Gaussian atom centered surface, and the skin surface. As figures of merit, we considered surface differentiability and surface area continuity with respect to atom positions, and the agreement with explicit solvent simulations. Geometric analysis seems to privilege the skin to the blobby surface, and points to an unexpected relationship between the non connectedness of the surface, caused by interstices in the solute volume, and the surface area dependence on atomic centers. In order to assess the ability to reproduce explicit solvent results, specific software tools have been developed to enable the use of the skin surface in Poisson-Boltzmann calculations with the DelPhi solver. Results indicate that the skin and Connolly surfaces have a comparable performance from this last point of view

    Chanalyzer : a computational geometry approach for the analysis of protein channel shape and dynamics

    Get PDF
    Morphological analysis of protein channels is a key step for a thorough understanding of their biological function and mechanism. In this respect, molecular dynamics (MD) is a very powerful tool, enabling the description of relevant biological events at the atomic level, which might elude experimental observations, and pointing to the molecular determinants thereof. In this work, we present a computational geometry-based approach for the characterization of the shape and dynamics of biological ion channels or pores to be used in combination with MD trajectories. This technique relies on the earliest works of Edelsbrunner and on the NanoShaper software, which makes use of the alpha shape theory to build the solvent-excluded surface of a molecular system in an aqueous solution. In this framework, a channel can be simply defined as a cavity with two entrances on the opposite sides of a molecule. Morphological characterization, which includes identification of the main axis, the corresponding local radius, and the detailed description of the global shape of the cavity, is integrated with a physico-chemical description of the surface facing the pore lumen. Remarkably, the possible existence or temporary appearance of fenestrations from the channel interior towards the outer lipid matrix is also accounted for. As a test case, we applied the present approach to the analysis of an engineered protein channel, the mechanosensitive channel of large conductance

    Antibody-Antigen Binding Interface Analysis in the Big Data Era

    Get PDF
    Antibodies have become the Swiss Army tool for molecular biology and nanotechnology. Their outstanding ability to specifically recognise molecular antigens allows their use in many different applications from medicine to the industry. Moreover, the improvement of conventional structural biology techniques (e.g., X-ray, NMR) as well as the emergence of new ones (e.g., Cryo-EM), have permitted in the last years a notable increase of resolved antibody-antigen structures. This offers a unique opportunity to perform an exhaustive structural analysis of antibody-antigen interfaces by employing the large amount of data available nowadays. To leverage this factor, different geometric as well as chemical descriptors were evaluated to perform a comprehensive characterization

    Antibody-Antigen Binding Interface Analysis in the Big Data Era

    Get PDF
    Antibodies have become the Swiss Army tool for molecular biology and nanotechnology. Their outstanding ability to specifically recognise molecular antigens allows their use in many different applications from medicine to the industry. Moreover, the improvement of conventional structural biology techniques (e.g., X-ray, NMR) as well as the emergence of new ones (e.g., Cryo-EM), have permitted in the last years a notable increase of resolved antibody-antigen structures. This offers a unique opportunity to perform an exhaustive structural analysis of antibody-antigen interfaces by employing the large amount of data available nowadays. To leverage this factor, different geometric as well as chemical descriptors were evaluated to perform a comprehensive characterization.Fil: Reis, Pedro B. P. S.. Istituto Italiano Di Technologie; Italia. Universidade Nova de Lisboa; PortugalFil: Barletta Roldan, Patricio German. The Abdus Salam; Italia. The Abdus Salam. International Centre for Theoretical Physics; Italia. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gagliardi, Lucas. Istituto Italiano Di Technologie; ItaliaFil: Fortuna, Sara. Istituto Italiano Di Technologie; ItaliaFil: Soler, Miguel A.. Istituto Italiano Di Technologie; ItaliaFil: Rocchia, Walter. Istituto Italiano Di Technologie; Itali
    • …
    corecore